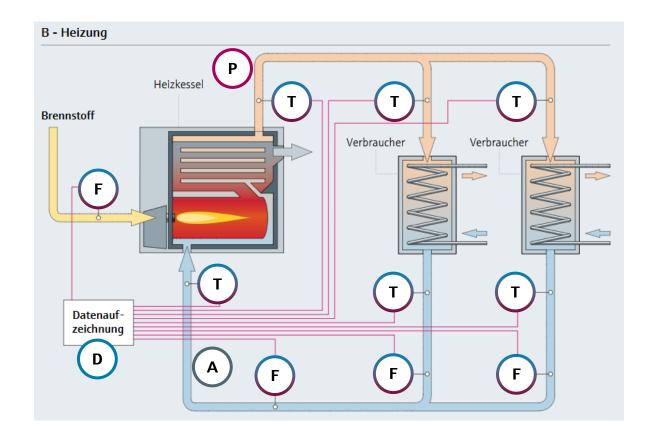


Agenda

- Was sind Hilfskreisläufe und ihre Funktion?
- Im Fokus: Heiz- und Kühlsysteme
- Kopplung von Prozessen Vom Kreislauf zum vernetzten System
- Effizienzsteigerung und Kostensenkung durch Transparenz
- Beispielhafte Instrumentierung und Veranschaulichung des Einsparpotenzials
- Zusammenfassung


Was sind Hilfskreisläufe und ihre Funktion?

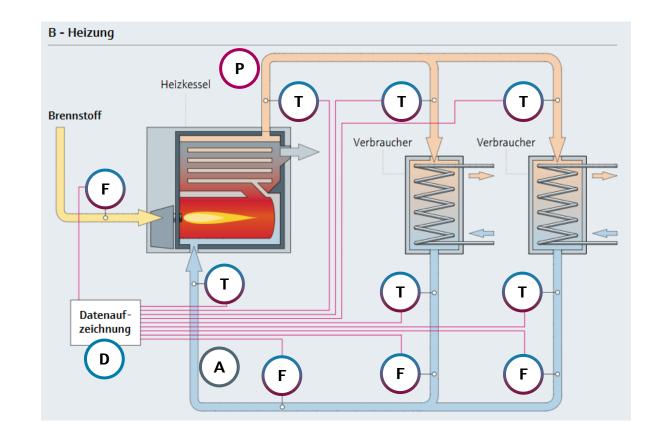
- Hilfskreisläufe unterstützen die Kernprozesse indem sie bspw. Strom, Wasser, Luft, Wärme oder Kälte bereitstellen.
- Sie sorgen f\u00fcr die korrekte Temperierung von (chemischen) Prozessen.
- Zu den weiteren allgemeinen Aufgaben gehören:
 - Verteilung von u.a. Wärme, Kälte & Wasser
 - Verbrauchsmessung & Abrechnung
 - Überwachung von Grenzwerten
 - Leckagenerkennung & -minimierung

Im Fokus: Heizsysteme

- Heizsysteme bestehen aus einem Heizkreislauf, dieser besteht aus
 - Wärmequelle (mit Brennstoffzufuhr)
 - Verbraucher (Wärmetauscher)
 - Geschlossenem Leitungssystem
 - Förderpumpe
- Im Heizkreislauf bewegt sich der Wärmeträger.
- Heizkessel und Feuerungsanlagen weisen oft hohe Energieverluste auf. Ihre Effizienz ist besonders hoch, wenn möglichst viel der erzeugten Wärme im Wärmeträger ankommt.

Im Fokus: Heizsysteme

Sicherheitsrelevante Messstellen:


- Brennstoffflussratenmessung zum Heizkessel
- Alle Temperaturmessstellen
- Druckmessung zur Pumpenüberwachung

Effizienzrelevante Messstellen

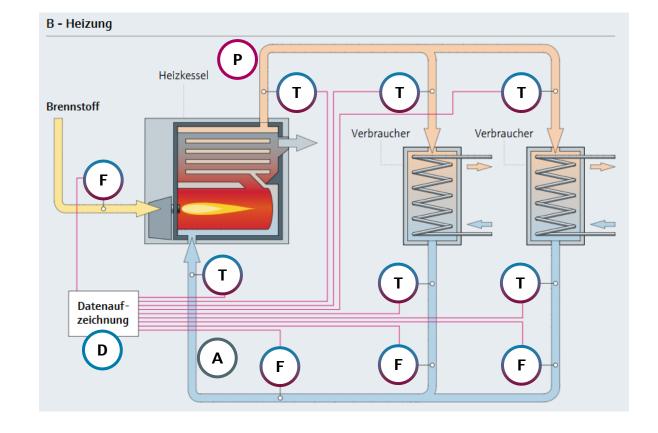
- Gepaarte Temperaturmessung an temperaturverändernden Einheiten
- Durchflussmessung innerhalb des Kreislaufs
- Abrechnungsfähige Datenaufzeichnung

Qualitätsrelevante Messstellen

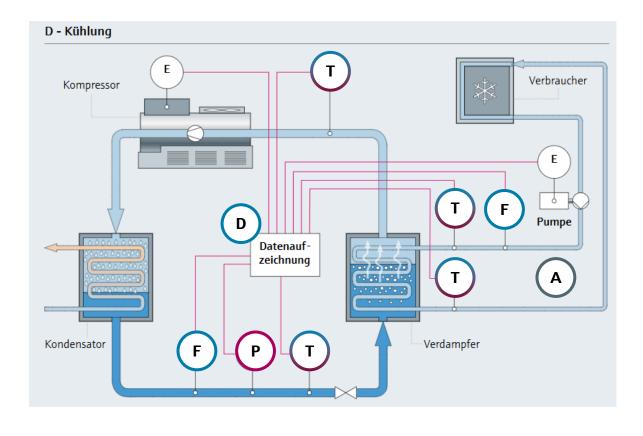
 Qualitätsparameter des Wärmeträgers zur Überwachung auf Korrosion & Veränderungen.

Im Fokus: Heizsysteme

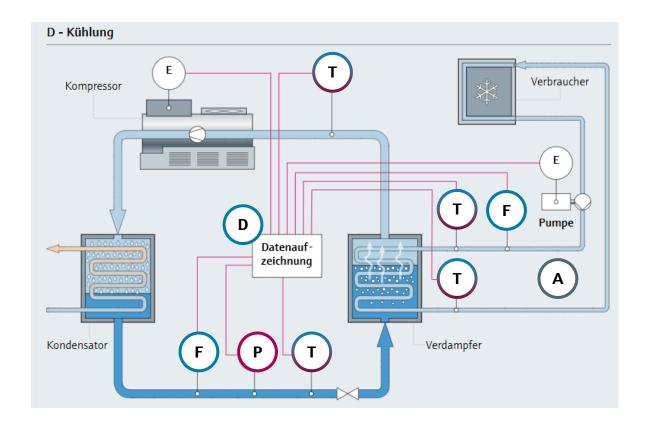
Sicherheitsrelevante Messstellen:



Effizienzrelevante Messstellen



Qualitätsrelevante Messstellen



Im Fokus: Kühlsysteme

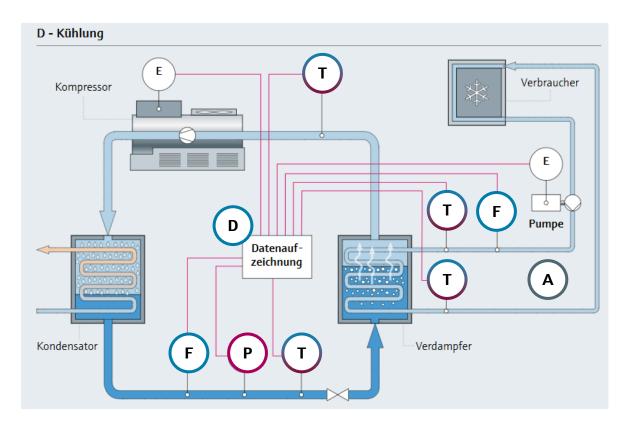
- Klassische Kühlsysteme bestehen aus min.
 zwei verbundenen Kreisläufen
 - Kühlkreislauf mit Kompressor, Kondensator & Verdampfer sowie Förderpumpe
 - Nutzkreislauf mit Kälteübertragung am Verdampfer und Wärmetauscher am Verbraucher sowie Förderpumpe
- In Kühl- und Nutzkreisläufen bewegen sich in der Regel unterschiedliche Kälteträger.
- Bei Kühlsystemen wird in der Regel die Energie vollständig als Strom aufgewendet. Sie machen oft bis zu 10% des Stromverbrauchs dergesamten Anlage aus.

Im Fokus: Kühlsysteme

Sicherheitsrelevante Messstellen:

- Alle Temperaturmessstellen
- Druckmessung zur Pumpenüberwachung & Kompressor

Effizienzrelevante Messstellen


- Durchflussmessung innerhalb der Kreisläufe
- Gepaarte Temperaturmessung an temperaturverändernden Einheiten
- Abrechnungsfähige Datenaufzeichnung

Qualitätsrelevante Messstellen

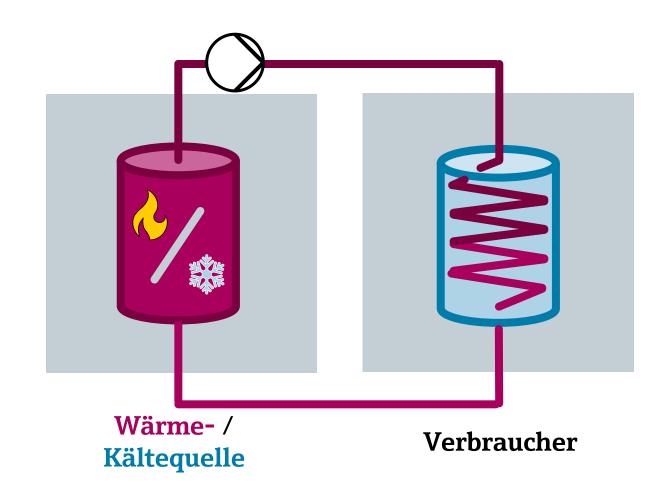
 Qualitätsparameter des wässrigen Kälteträgers zur Überwachung auf Korrosion, Veränderungen & Durchbrüche.

Endress+Hauser 🖽

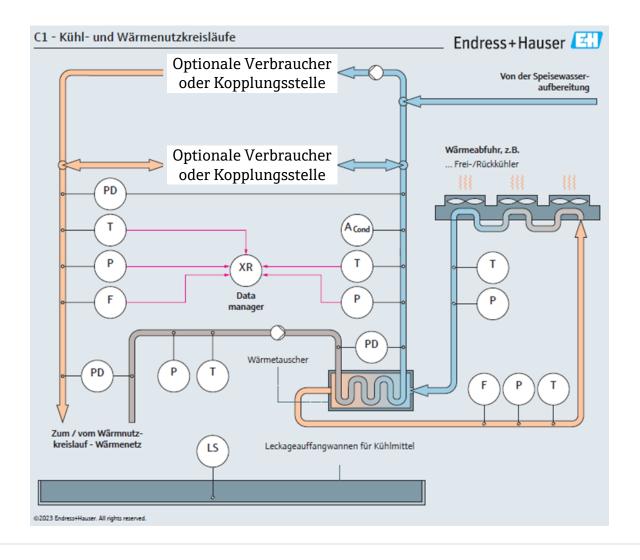
Im Fokus: Kühlsysteme

Sicherheitsrelevante Messstellen:

Effizienzrelevante Messstellen



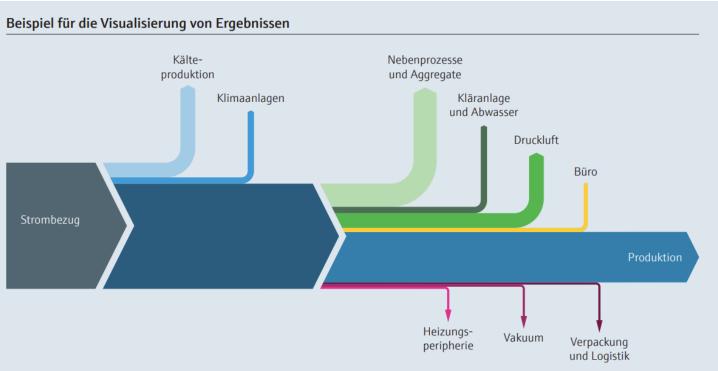
Qualitätsrelevante Messstellen



Im Fokus: Heiz- & Kühlsysteme

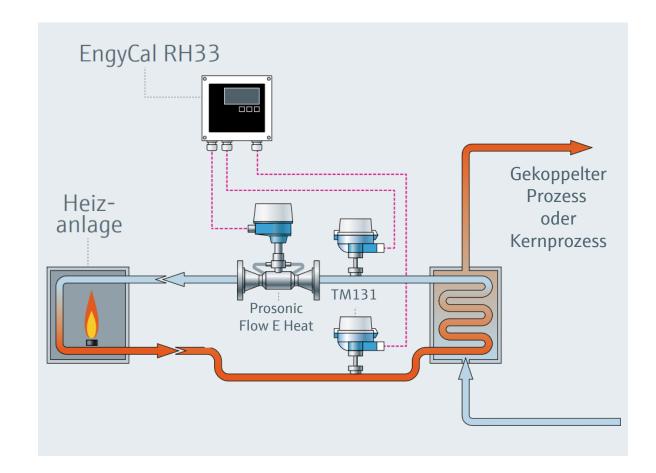
- Mögliche Wärmequellen:
 - Heizkessel (Gas, Öl, Strom)
 - Wärmepumpe (Strom)
 - Exotherme Kernprozesse
- Mögliche Kältequellen:
 - Wärmepumpe (Strom) bzw. Teile davon
 - Endotherme Kernprozesse
- Mögliche Verbraucher:
 - Kernprozesse
 - Gebäude
 - Fernwärme

Kopplung von Prozessen – Vom Kreislauf zum vernetzten System



- Prozesse können über Wärmetauscher (und Wärmepumpen) miteinander gekoppelt werden.
- In Kreisläufen können Leckagen frühzeitig durch Differenzdruckmessungen (PD) erfasst werden.
- Die Qualität des Heiz- oder Kühlmediums wird mit Leitfähigkeits- und pH-Messungen überwacht.
- Zur abrechnungsfähigen Erfassung der Wärme- oder Kältemenge sollte eine geeignete Datenerfassung eingesetzt werden.

Effizienzsteigerung und Kostensenkung durch Transparenz


 Transparenz ist das Herzstück der Effizienz. Nur wenn man weiß, wie viel Energie wohin geht, lassen sich Einsparpotenziale aufdecken.

Das Herz der Hilfskreisläufe - Eichfähiger Wärmemengenzähler Engycal RH33

- BTU-Wärmezähler bestehend aus
 - Eichfähiger Wärmemengenzähler RH33
 - Durchflussmessgerät (z.B. Prosonic Flow E Heat)
 - Gepaarte Temperaturfühler (z.B. TM131)
- Exakte Erfassung in jedem Wärme- und Kältekreislauf mit MID-Zulassung
- Gepaarte Temperaturfühler erhöhen die Genauigkeit und können bei Defekt einzeln ausgetauscht werden.
- Beliebiges Durchflussmessprinzip möglich

Veranschaulichung des Einsparpotenzials – Kalibrierung Temperaturfühler

Definition: Temperatur von 1kg (=1L) Wasser um 1°C zu erhöhen benötigt 1kcal.

Beispiel:

 Der Temperaturfühler hat ein Offset von 0,5°C. Der Istwert beträgt z.B. 70,5°C aber angezeigte Sollwert beträgt 70°C. Es wird kontinuierlich 0,5°C höher geheizt als nötig.

Bedeutung:

- Jeder Liter erwärmtes Wasser, braucht 0,5kcal zusätzlich.
- Alle 500L wird der Energiegehalt eines Schokoriegels (50g, 250kcal) extra aufgewendet.

<u> </u>	<u> </u>	٠,	, ,
Leitungsdurchmesser	Flussrate	Sch	okoriegel / Stunde
DN25	1m/s ≈ 33 L/min	4	
DN50	1m/s ≈ 100 L/min	12	
DN100	1m/s ≈ 450 L/min	54	

Zusammenfassung

